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A very, very brief introduction to partial differential equations and some methods of their solution.
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1 Terminology

q

A differential equation involving the partial derivatives of a function is known as a partial differential
equation (PDE). For example:

ϕxx + 2ϕxy − y2ϕx = sin(xy) or ϕx + 2ϕy = 0

are two differential equations for a function ϕ ≡ ϕ(x, y). In general, a PDE for ϕ ≡ ϕ(x, y) can be
written as:

F(x, y, ϕ, ϕx, ϕy, ϕxx, ϕxy, ϕyy, · · · ) = 0

i.e. as a function of the independent variables x, y and the dependent variables ϕ(x, y) including all of
its partial derivatives ϕx, ϕy, ϕxx, etc. If the function F above is linear, then the PDE is called linear.
That is, if we write the PDE in terms of a differential operator L acting on ϕ: Lϕ = g(x, y) where g
is some function independent of ϕ, then the PDE is linear if L satisfies:

L(λϕ) = λLϕ and L(ϕ1 + ϕ2) = Lϕ1 + Lϕ2

for any λ ∈ R and function ϕi ≡ ϕi(x, y). If g = 0 in the PDE Lϕ = g(x, y) then the PDE is
homogeneous; otherwise it is inhomogeneous. As with ODEs, linearity of a homogeneous PDE allows
one to create a superposition of solutions:

Lu1 = 0 and Lu2 = 0 =⇒ L (au1 + bu2) = 0

and so au1+ bu2 is a solution for any a, b,∈ R. This is extended to the inhomogeneous PDE since the
addition of a homogeneous solution of a PDE to an inhomogeneous PDE is still a solution:

Lu1 = g︸ ︷︷ ︸
inhomogeneous solution

and Lu2 = 0︸ ︷︷ ︸
homogeneous solution

=⇒ L (au1 + bu2) = aLu1 + bLu2 = g + 0 = g.

Consider the following first-order homogeneous PDE:

ϕx = e2x

for some function ϕ ≡ ϕ(x, y). As with ODEs, we can solve this equation using (partial) integration:

ϕ =

∫
e2x dx =

1

2
e2x + C(y)

in terms of an arbitrary function C(y). As with ODEs, we can check this result by (partially)
differentiating the solution with respect to x. The difference between PDEs and ODEs is now
transparent: whereas the solution to an ODE contains arbitrary constants of integration, the solution
to a PDE, in general, contains arbitrary functions. These are fixed by additional conditions on the
solution that arise from the physical problem at hand. These are often split into two different classes:
initial conditions and boundary conditions. Most physical problems we consider shall be
evolutionary and depend upon time t. In general, they start from some initial time (usually t = 0) and
so we must express the value of the function, and possibly some of its derivatives, at this time: these
are called initial conditions. This should be contrasted with boundary conditions which specify the
spatial region in which the PDE is valid. The most important boundary conditions are:

Dirichlet condition: ϕ is specified on the boundary.

Neumann condition: The derivative of ϕ normal to the boundary is specified.

The number of initial and boundary conditions one must specify in order to define the problem depend
upon the order of the PDE in the temporal and spatial variables respectively. We shall illustrate these
remarks in the subsequent chapters when we analyse three particular PDEs: the wave equation, the
heat equation and Laplace’s equation.
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2 First-order PDEs and the Method of Characteristics

q

We begin our examination of partial differential equations by considering quasi-linear first-order
PDES:

a(t, x, u)
∂u

∂t
+ b(t, x, u)

∂u

∂x
= c(t, x, u) or a(t, x, u)ut + b(t, x, u)ux = c(t, x, u) (1)

using the subscript notation introduced previously, for some function u ≡ u(t, x) and arbitrary
functions a, b, c. The term quasi-linear refers to PDEs whose highest-order terms appear only as
individual terms multiplied by lower order terms. There are two specific subclasses:

Semi-linear: a(t, x)ut + b(t, x)ux + b(t, x) = c(t, x, u)

Linear: a(t, x)ut + b(t, x)ux = c(t, x)u+ d(t, x).

Therefore semi-linear PDEs are those whose highest-order terms are linear; whereas a linear PDE
conforms to description in the previous chapter. First-order PDEs occur often in physics and
engineering, as they are intimately related to conservation laws which are fundamental to our
description and understanding of the physical world.

The technique that we shall employ to solve first-order PDEs - the method of characteristics - is used
to solve quasi-linear PDEs and hence can also be employed for the various subclasses. It has a nice
geometric interpretation that we attempt to describe below:

A solution to (1) is of the form u = u(t, x): a surface in R3 known as the integral surface of the PDE.
The surface is subject to some initial condition:

u( t0(s), x0(s) ) = F ( t0(s), x0(s) )

in terms of some arbitrary function F and s-parametrised curve ( t0(s), x0(s) ) in the tx-plane which
we shall call the anchor curve. This terminology is not widespread, but is a useful concept1. This
curve can be “lifted” to the integral surface and defines the initial curve:

( t0(s), x0(s), u0(s) ) = ( t0(s), x0(s), u(t0(s), x0(s)) ) = ( t0(s), x0(s), F (t0(s), x0(s)) ).

Consider now a vector which is normal to the surface at each point. It can be shown2 that a normal
vector to any point on the integral surface is given by:

n⃗ = (ut, ux,−1).

Notice now that can rewrite (1) in terms of n⃗:

a(t, x, u)ut + b(t, x, u)ux − c(t, x, u) = 0 =⇒

a(t, x, u)

b(t, x, u)

c(t, x, u)

 ·

 ut

ux

−1

 = 0

=⇒ F⃗ · n⃗ = 0

1I came across the idea in the book: “Partial Differential Equations: Theory and Solved Problems” by T.Hillen, I.E.
Leonard and H. Van Roessel (Wiley, 2012).: an interesting and useful read.

2Given any surface in R3: u = f(t, x) or g(t, x, u) = f(t, x) − u = 0, the vector (∇g)(t, x, u) = (∂tg, ∂xg, ∂ug) =
(ft, fx,−1) is normal to every point on the surface.
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in terms of the vector F⃗ ≡ ( a(t, x, u), b(t, x, u), c(t, x, u) ). This says that F⃗ is perpendicular to n⃗ at
every point on the integral surface. That is, F⃗ is tangent to every point on the integral surface. Given
such a vector field, we can find the family of integral curves to which the vector field is tangent to and
the integral surface, the solution to our PDE which we are trying to describe, is made up of these
integral curves. If (t0, x0, u0) is a point lying on the integral surface of the PDE and
( t(τ), x(τ), u(τ) ) a τ -parametrised curve that passes through (t0, x0, u0) at τ = 0, then it can be
shown that the conditions for the curve to remain on the integral surface (i.e. to be an integral curve
of F⃗ ) are:

dt

dτ
= a( t(τ), x(τ), u(τ) ),

dx

dτ
= b( t(τ), x(τ), u(τ) ),

du

dτ
= c( t(τ), x(τ), u(τ) ). (2)

u

x

t

F⃗

n⃗

n⃗

F⃗

Characteristic:
(t(τ), x(τ), 0)

Characteristic curve:
(t(τ), x(τ), u(τ))

Anchor curve:
(t0(s), x0(s), 0)

Initial curve:
(t0(s), x0(s), u0(s))

These are known as the characteristic equations and define the characteristic curve of the PDE. The
projection of the characteristic curve into the xy-plane are the characteristics. The characteristic
equations are accompanied by the initial conditions3:

t(0) = t0(s), x(0) = x0(s), u(0) = u0(s) (3)

which stipulate the integral curves (i.e. the characteristics) must start on the initial curve. Since each
characteristic starts at a different point on the initial curve (a different value of s), we have a
one-parameter family of characteristics ( ts(τ), xs(τ), us(τ) ) = ( t(τ, s), x(τ, s), u(τ, s) ): a relation
that represents a parametrised surface in R3. Thus, we have reduced our problem of solving (1) to
solving the system of first-order ODEs (2) subject to the initial conditions (3). This is known as the
Cauchy problem for quasilinear PDEs and one can consider the characteristic curves as propagating
forward from the initial curve, independently of one another, and “knitting” together to form the
integral surface.

3The initial conditions are chosen here to be at τ = 0, but they may be at any τ = τ0 ∈ R.
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The heuristic argument above can be used to form an algorithm for solving quasilinear PDEs. We
outline the method in the following examples:

Example

Consider the PDE system: {
ut + c ux = 0

u(0, x) = f(x)

in terms of a constant c ∈ R and arbitrary function f . The anchor curve is (0, x): the x-axis,
which is s-parametrised by the curve (0, s). This gives initial curve (0, s, f(s)) on the integral
surface in R3. Denoting τ -derivatives using a prime (i.e. df/dτ = f ′(τ) for any function f ), the
characteristic equations and their solution are:

t′(τ) = 1

x′(τ) = c

u′(τ) = 0

 =⇒


t(τ) = τ + C1

x(τ) = cτ + C2

u(τ) = C3

in terms of the constants of integration C1, C2, C3 ∈ R. These constants are fixed by the matching
the characteristic curve to the initial curve at τ = 0:

t(0) = 0

x(0) = s

u(0) = f(s)

 =⇒


t(τ) = τ

x(τ) = cτ + s

u(τ) = f(s)

The first two equations relate (t, x) to (τ, s) and can be inverted:

τ = t and s = x− cτ = x− ct

yielding solution to the PDE:

u(τ) = f(s) = f(x− ct).

It can be checked that this is indeed a solution by plugging the result back in the partial differential
equation. As can be seen from the example, the general method to solve a quasi-linear PDE is as
follows:

1⃗.
Find and s-parametrise

the anchor curve

2⃗.
Use the anchor curve to

construct the initial
curve

3⃗.
Solve the

τ -parametrised
characteristic equations

4⃗.
Match the initial and

characteristic curves at
τ = 0 (fixing arbitrary

constants from 3)

5⃗.
Solve (t, x) equations

in terms of (τ, s)

6⃗.
Substitute (τ, s)

relations into solution
u(τ) to find solution to

PDE

4



To help further understand a solution, it is useful to examine the characteristics. For the example
above, these are given by the τ -parametrised curves (t, x) = (τ, cτ + s) or s = x − ct. Notice that
the solution u = f(x − ct) is constant along this characteristics. The equation for the characteristics
can be rearranged as t = (x − s)/c or t = (x − x(0))/c as x(0) = s is the initial value of x on the
characteristic curves for this problem. Thus, plotting the characteristics:

t

x

t =
x− x(0)

c

The characteristics given the direction upon which the initial curve propagates (the circles indicate
particular positions on the s-parametrised initial curve). For the example above, we see they move
forward in time to the right (increasing x) with “speed” given by the gradient 1/c. One can see that
the initial profile, as specified by the initial condition u(0, x) = f(x) will be parallel propagated
along the characteristics without spreading.

Example

Consider the PDE system: {
(t+ x)ut + xux = u+ 1

u(0, x) = x2.

The anchor curve is (0, x): the x-axis, which is s-parametrised by the curve (0, s). This gives
initial curve (0, s, s2) on the integral surface in R3. The characteristic equations and their solution
are:

t′(τ) = t+ x

x′(τ) = x

u′(τ) = u+ 1

 =⇒


t(τ) = C1τe

τ + C2e
τ

x(τ) = C1e
τ

u(τ) = C3e
τ − 1

in terms of the constants of integration C1, C2, C3 ∈ R. Note the ODE system is coupled,
in general requiring simultaneous solution, but these can be solved sequentially to yield a
solution (starting with the x(τ) ode). The constants of integration are fixed by the matching
the characteristic curve to the initial curve at τ = 0:

t(0) = 0

x(0) = s

u(0) = s2

 =⇒


t(τ) = sτeτ

x(τ) = seτ

u(τ) = (1 + s2)eτ − 1

The first two equations relate (t, x) to (τ, s). Using

t

x
=

sτeτ

seτ
= τ and s = xe−τ = xe−

t
x

5



we can invert the relations:

τ =
t

x
and s = xe−

t
x .

These yield solution to the PDE:

u(τ) = (1 + s2)eτ − 1 = (1 + x2e−
2t
x )e

t
x − 1 = x2e−

t
x + e

t
x − 1.

The characteristics of this PDE are given by the τ -parametrised curve (t, x) = (sτeτ , seτ ) or
s = xe−t/x yielding t = x ln(x/s) = x ln(x/x(0)) since x(0) = s on the initial curve.

2 4 6 8
0

5

10

15

20

t

x

One can see from these characteristics how the initial profile will spread as it is propagated along
the characteristics of the PDE.

6



3 Second-order PDEs and their Classification

q

With analogy to a general second-order algebraic equation in the plane:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

in terms of arbitrary constants A,B, . . . , F , we consider the general form of a linear second-order
PDE in terms of two independent variables x, y

Aϕxx +Bϕxy + Cϕyy +Dϕx + Eϕy + Fϕ = G

where A,B, . . . , G are, in general, functions of x and y (if G is also a function of ϕ then the PDE is
called quasi-linear).

Ellipse Parabola Hyperbola

As with the algebraic equation, such a PDE can be classified by the value of the discriminant ∆(x, y) ≡
B2 − 4AC:

∆(x, y) > 0: the PDE is hyperbolic

∆(x, y) = 0: the PDE is parabolic

∆(x, y) < 0: the PDE is elliptic.

Notice that this implies the character of a PDE is fully determined by the coefficients of the second
derivatives: it has nothing to do with the lower derivative terms. Since the discriminant is a function
of x and y, this classification applies to a specific point (x, y) on the domain where the PDE is valid.
In particular, this means a PDE may change classification from one region to another. If A,B,C are
constants, this cannot occur and the classification remains the same throughout the domain where the
PDE is valid.

It can be shown any PDE of a particular classification can be reduced to canonical form:

Hyperbolic: ϕxx − ϕyy + · · · = 0

Parabolic: ϕxx + · · · = 0 or ϕyy + · · · = 0

Elliptic: ϕxx + ϕyy + · · · = 0

where the ‘dots’ represent terms with derivatives of lower orders. We shall consider a PDE of each
type in the following three sections, ones associated with the leading terms in each classification.
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4 The Wave Equation

q

Consider a taut string with constant mass density ρ. Let ϕ(t, x) denote the small vertical displacement
of the string; we shall neglect the horizontal displacement. The forces acting on a small section of the
string of length h are tension T and gravity −(ρh)g:

y

x
x x+ h

T (t, x)

T (t, x+ h)

θ(t, x)

θ(t, x+ h)

−(ρh)g

Since there is no motion in the horizontal direction, the forces balance:

T (t, x) cos( θ(t, x) ) = T (t, x+ h) cos( θ(t, x+ h) ) =⇒ T (t, x+ h) cos( θ(t, x+ h) )− T (t, x) cos( θ(t, x) )

h
= 0

or in the limit as h → 0:
∂

∂x

(
T (t, x) cos( θ(t, x) )

)
= 0 =⇒ T (t, x) cos( θ(t, x) ) = T0(t). (4)

In the vertical direction we apply Newton’s Second Law:

ρhϕtt(t, x) = T (t, x+ h) sin( θ(t, x+ h) )− T (t, x) sin( θ(t, x) )− ρhg

=⇒ ϕtt(t, x) =
T (t, x+ h) sin( θ(t, x+ h) )− T (t, x) sin( θ(t, x) )

ρh
− g

or, in the limit as h → 0:

ϕtt(t, x) =
1

ρ

∂

∂x

(
T (t, x) sin( θ(t, x) )

)
− g.

Using (4), this can be written

ϕtt(t, x) =
T0(t)

ρ

∂

∂x

(
tan( θ(t, x) )

)
− g.

Geometrically it is clear that tan( θ(t, x) ) = ϕx(t, x) and so

ϕtt(t, x) =
T0(t)

ρ
ϕxx(t, x)− g.

Neglecting the force due to gravity and assume T0(t) ≡ T0 is a constant, then this can be written:

ϕ ≡ ϕ(t, x) : ϕtt = c2ϕxx where c ≡

√
T0

ρ

which is known as the wave equation. The number c is an important parameter defining the speed
of the wave. It can be shown that the same equation arises in different physical settings, such as
longitudinal or torsional stress waves in a rod. It is easily generalised to higher dimensions:
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In two spatial dimensions, ϕ ≡ ϕ(t, x, y): ϕtt = c2 (ϕxx + ϕyy )

In three spatial dimensions, ϕ ≡ ϕ(t, x, y, z): ϕtt = c2 (ϕxx + ϕyy + ϕzz)︸ ︷︷ ︸
∇2ϕ

in terms of the Laplacian operator ∇2. Such equations appear in the study of acoustic waves, water
waves, electromagnetic waves and others.

Since the wave equation contains second-order derivatives in both space x and time t, we require two
boundary conditions and two initial conditions to determine the solution for all t > 0. We consider the
vertical motion ϕ(t, x) of a plucked string at time t and position x whose ends at x = 0 and x = L are
held fixed:

y

x
x = 0 x = L

ϕ(t, x)

The motion of the string is governed by the wave equation in one spatial dimension:

ϕtt = c2ϕxx (0 < x < L, t > 0)

where we have specified the domain of validity of the PDE. The boundary conditions of the problem
are the specification that the solution must vanish at the endpoints, since the string is held fixed and
unable to move vertically at these points:

ϕ(t, 0) = 0 and ϕ(t, L) = 0 (t ≥ 0).

Note that these conditions must hold for all time t > 0. The initial conditions of the problem are the
specification of the initial position of the string and its initial velocity. For example:

ϕ(0, x) = sin
(πx
L

)
and ϕt(0, x) = 0 (0 ≤ x ≤ L)

specifies a string held at rest with initial shape corresponding to half a sine-wave. Notice that the initial
conditions and boundary conditions ‘overlap’ at t = 0, x = 0 and t = 0, x = L, so it must be checked
they are compatible at this points. The wave equation will then determine the motion of the string once
it is released. Together, we have the following initial-value boundary-value problem:

ϕtt = c2ϕxx (0 < x < L, t > 0)

ϕ(t, 0) = 0 (t ≥ 0)

ϕ(t, L) = 0 (t ≥ 0)

ϕ(0, x) = sin
(πx
L

)
(0 ≤ x ≤ L)

ϕt(0, x) = 0 (0 ≤ x ≤ L)
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5 The Heat Equation

q

Consider a one-dimensional rod of length L and constant cross-sectional area A:

x = a x = bx = 0 x = L

A x ϕ(t, x+ h)Aϕ(t, x)A

Consider a small section of the rod between x = a and x = b. The heat energy Q of the section is
given by

Q =

∫ b

x=a
e(t, x)Adx

where e(t, x) is the thermal energy density of the rod. Due to the conservation of energy, the rate of
change of thermal energy through a section of the rod between x = a and x = b is due to the energy
flow through the ends:

Rate of change of
heat energy =

Heat energy flowing across
boundaries per unit time − Heat energy generated

inside per unit time .

We introduce the heat flux: the amount of thermal energy per unit time flowing per unit surface area.
Consequently, the heat energy flowing per unit time across the boundaries of the section of the rod is
ϕ(t, a)A− ϕ(t, b)A. Thus:

d

dt

∫ b

x=a
e(t, x) dx = ϕ(t, a)− ϕ(t, b)

after cancellation of the constant A. Assuming a, b to be constants then the derivative can interchanged
with the integral:

d

dt

∫ b

x=a
e(t, x) dx =

∫ b

x=a

∂e

∂t
dx.

Furthermore, noting that

ϕ(t, a)− ϕ(t, b) = −
∫ b

x=a

∂ϕ

∂x
dx

yields ∫ b

x=a

(
∂e

∂t
+

∂ϕ

∂x

)
dx = 0.

Since this integral must vanish for arbitrary a, b then the integrand itself must vanish (see the next
chapter for further discussion of this) and hence

∂e

∂t
+

∂ϕ

∂x
= 0 =⇒ ∂e

∂t
= −∂ϕ

∂x
.

10



The thermal energy density is related to the temperature of the rod by e(t, x) = cρT (t, x) where c is
the specific heat of the rod and ρ is the constant mass density of the rod. Along with Fourier’s Law
relating the heat flux to the gradient of the temperature of the rod:

ϕ(t, x) = −K
∂T

∂x

where K is the (constant) thermal conductivity of the rod, we obtain

cρ(x)
∂T

∂t
= K

∂2T

∂x2
=⇒ Tt = κTxx where κ =

K

cρ
.

The constant κ is called the thermal diffusivity of the rod and this PDE is known as the heat equation
or, more generally, the diffusion equation (as it applies to other physical processes involving quantities
that ‘spread out’). It differs from the wave equation simply by only having a first-order derivative
in t and not a second-order derivative. As with the wave equation, it is easily generalised to higher
dimensions:

In two spatial dimensions, ϕ ≡ ϕ(t, x, y): ϕt = κ (ϕxx + ϕyy )

In three spatial dimensions, ϕ ≡ ϕ(t, x, y, z): ϕt = κ∇2ϕ

Returning to our one-dimensional rod, since the heat equation contains a single derivative in time t,
only a single initial condition is required to determine the solution. Such a condition specifies the
initial temperature distribution of the rod at time t = 0. Boundary conditions are also required at each
of the rod (x = 0 and x = L) and the appropriate condition depends upon the physical mechanism
in effect. For example, we may want to prescribe the temperature at one end: T (t, 0) = 10 implies
that the temperature at x = 0 is held at 10◦ for all time t > 0, perhaps due to being in contact with a
thermal bath; and we may wish to describe the other end as being (perfectly insulated): Tx(0, t) = 0
since Tx is related to the heat flow via Fourier’s Law. In such a case, there is no heat flow through this
end of the rod. Thus, the heat equation is also an initial-value boundary-value problem of the form:

ϕt = κ2ϕxx (0 < x < L, t > 0)

ϕ(t, 0) = T0 (t ≥ 0)

ϕ(t, L) = TL (t ≥ 0)

ϕ(0, x) = x2 (0 ≤ x ≤ L)

in terms of two constants T1, T2 specifying the constant temperatures of the end points at x = 0 and
x = L respectively.
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6 Laplace’s Equation

q

Consider the heat and wave equations in two spatial dimensions:

ϕxx + ϕyy = κϕt and ϕxx + ϕyy = c2ϕtt

respectively. If either equation is in a steady or stationary state (i.e. independent of time) then ϕt =
ϕtt = 0 and they both reduce to Laplace’s equation:

ϕxx + ϕyy = 0.

In three dimensions this becomes

∇2ϕ = ϕxx + ϕyy + ϕzz = 0.

Functions ϕ which satisfy Laplace’s equation are called harmonic. The inhomogeneous version of
Laplace’s equation:

∇2ϕ = f(t, x, y, z)

is known as Poisson’s equation. These equations appear in many physical processes including
electrostatics, steady fluid flow, Brownian motion and Newtonian gravity.

Since Laplace’s equation only involves spatial derivatives of second-order, it is a boundary-value
problem. For example, consider the following physical problem: a thin rectangular plate has its edges
fixed at temperatures zero on three sides and f(y) on the remaining side:

y

x
(0, 0) (a, 0)

(a, b)(0, b)

ϕ = 0

ϕ = 0

ϕ = 0 ϕ = f(y)

Its lateral sides are then insulated and it is allowed to stand for a “long” time with the edges maintained
at the aforementioned boundary temperatures. To find the temperature distribution in the plate, which
is now in a steady state, we solve Laplace’s equation on the rectangle:

ϕxx + ϕyy = 0 (0 < x, y < L)

ϕ(0, y) = 0 (0 ≤ y ≤ b)

ϕ(a, y) = f(y) (0 ≤ y ≤ b)

ϕ(x, 0) = 0 (0 ≤ x ≤ a)

ϕ(x, b) = 0 (0 ≤ x ≤ a).
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7 Methods of Solution

q

In the final section we shall discuss two particular methods of solution: separation of variables and the
Laplace transform. Our aim will be rather modest: rather than solve the PDE we shall aim to reduce
it to a system of ODEs which, from a previous chapter, we have methods to solve (though we will
indicate briefly how to proceed). We shall demonstrate the methods through two examples.

Example

Consider the PDE system (a rescaled version of the wave equation on a unit string):

ϕtt = ϕxx (0 < x < 1, t > 0)

ϕ(t, 0) = 0 (t ≥ 0)

ϕ(t, 1) = 0 (t ≥ 0)

ϕ(0, x) = f(x) (0 ≤ x ≤ 1)

ϕt(0, x) = 0 (0 ≤ x ≤ 1)

in terms of some known function f(x). The method of separation of variables attempts to find
a solution to a PDE by writing the unknown function of two (or more) variables by a product of
functions of a single variable. For this example, we assume:

ϕ(t, x) = T (t)X(x)

in terms of the non-zero functions T,X to be found. Substitution of this into the PDE yields:

ϕtt = ϕxx =⇒ TttX = TXxx =⇒ Ttt

T
=

Xxx

X

after division of both sides by XT . We have now separated variables: the left-hand side of the
final expression is purely a function of x whereas the right-hand side is purely a function of t.
Differentiating with respect to t gives:

d

dt

(
Ttt

T

)
= 0 =⇒ Ttt

T
= constant.

Call this constant λ then we have obtained:

Ttt

T
=

Xxx

X
= λ =⇒

{
Ttt = λT

Xxx = λX

and we have reduced the problem to a pair of coupled ODEs. To proceed, one must solve the
second-order ODEs. Since the auxiliary equation for both is M2 = λ with solution M = ±

√
λ,

it is clear that one must analyse the cases λ > 0, λ < 0 and λ = 0 separately. These lead to three
distinct solutions:

λ < 0: ϕ(t, x) =
[
A1 sin(

√
λx) +B1 cos(

√
λx)

] [
C1 sin(

√
λt) +D1 cos(

√
λt)

]
λ = 0: ϕ(t, x) = [A2 +B2x] [C2 +D2t]

λ > 0: ϕ(t, x) =
[
A3 sinh(

√
λx) +B3 cosh(

√
λx)

] [
C3 sinh(

√
λt) +D3 cosh(

√
λt)

]
.
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However, they must satisfy both the initial conditions and the boundary conditions. The only
class of solution that yield solutions that satisfy both the PDE and the initial conditions is λ < 0.
Consequently, it is convention to write the constant λ = −α2 and hence the solution subject to
the initial conditions becomes:

ϕ(t, x) = A sin(nπx) [B sin(nπt) + C cos(nπt)]

where α = nπ for any integer n. The boundary condition ϕt(0, x) = 0 implies B = 0 yielding

ϕ(t, x) = A sin(nπx) cos(nπt)

is a solution for arbitrary A. In fact, since the PDE was linear:

ϕ(t, x) =
∞∑
n=1

An sin(nπx) cos(nπt) = A1 sin(πx) cos(πt) +A2 sin(2πx) cos(2πt) + · · ·

is a solution to the PDE. We are yet to satisfy the final boundary condition ϕ(0, x) = f(x) for
some known function f(x). This is satisfied provided:

f(x) =
∞∑
n=1

An sin(nπx).

In fact, it can be shown that any function can be expanded in terms of a linear combination of sines
and cosines (so that any odd function f can be expanded as above). This is known as a Fourier
series and is beyond the scope of the current course. Needless to say, the boundary condition can
be satisfied and this condition determines the unknown constants An. Thus, we are able to obtain
a unique solution to our PDE problem.

Example

Consider the PDE system (a rescaled version of the heat equation in a rod of unit length):
ϕt = ϕxx (0 < x < 1, t > 0)

ϕ(t, 0) = 0 (t ≥ 0)

ϕ(t, 1) = T0 (t ≥ 0)

ϕ(0, x) = 0 (0 ≤ x ≤ 1)

in terms of some constant T0. We shall solve the system using Laplace transforms and in order to
perform the transform of a function of two variables with respect to time t, we transform from t
to s and consider the other variable as a parameter:

L{ϕ(t, x)} = Φ(s, x), L{ϕt(t, x)} = sΦ(s, x)− ϕ(0, x)

L{ϕx(t, x)} = Φx(s, x), L{ϕxx(t, x)} = Φxx(s, x)

where s > 0. Consequently, the Laplace transform of the PDE becomes:

L{ϕt} = L{ϕxx} =⇒ sΦ(s, x)− ϕ(0, x) = Φxx(s, x) =⇒ sΦ(s, x) = Φxx(s, x).

where we have used the initial condition. Thus, we have reduced the problem to a second-order
ODE in x. As s > 0, this has solution

Φ(s, x) = A sinh(
√
s x) +B cosh(

√
s x).
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We can fix the constants using the boundary conditions which must also be Laplace transformed:{
L{ϕ(t, 0)} = L{0}

L{ϕ(t, 1)} = L{T0}
=⇒


Φ(s, 0) = 0

Φ(s, 1) =
T0

s
.

These boundary conditions for Φ(s, x) yield:

Φ(s, x) =
T0 sinh(

√
s x)

s sinh(
√
s)

.

The solution to the PDE can then be found by taking the inverse Laplace transform:

ϕ(t, x) = L−1

{
T0 sinh(

√
s x)

s sinh(
√
s)

}
.

Of course, this last step is non-trivial and beyond the methods we have employed in this course.
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